CHRONOPERM 36

COMPOSITION (in wt%)

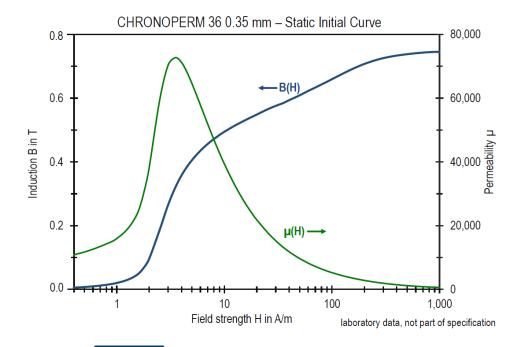
36.4 Ni - 6.8 Cr - bal. Fe

PRODUCT DESCRIPTION

CHRONOPERM® 36 is a cost efficient alloy that has specifically been developed for use in stator laminations of stepping-motors (Lavet-type Motors) in electro-mechanical clocks. The magnetic saturation of CHRONOPERM 36 matches with previously used 80 % NiFe alloys, while its low Ni-content significantly reduces the raw material costs of the alloy.

TYPICAL APPLICATIONS

Stator laminations for stepping motors of electro-mechanical clocks


MAIN PROPERTIES

- Saturation induction J_S = 0.75 T
- Electrical resistivity ρ_e = 0.93 $\mu\Omega m$
- Max. permeability μ_{max} = 60,000*

FORMS OF SUPPLY

- Strip material, thickness 0.025 2 mm, width ≤ 305 mm
- · Stamped parts, laminations, and laminated assemblies

Other dimensions and tolerances upon request.

^{*}typical for thickness 0.35 mm, data for other dimensions upon request

STRIP MATERIAL 0.35 mm - TYPICAL VALUES

PHYSICAL PROPERTIES	Unit	
Mass density ρ	g/cm ³	8.2
Fhermal conductivity (25 °C) λ	W/(m·K)	13 – 14
Fhermal expansion coefficient (20 – 100 °C) α	10 ⁻⁶ /K	6.3
Electrical resistivity $\rho_{\rm e}$	μΩm	0.93
STATIC MAGNETIC PROPERTIES		
Coercivity H _C	A/m	3
Saturation polarization J _S	T	0.75
Saturation magnetization B _s at H = 40 kA/m	Т	0.80
Maximum permeability μ_{max}		60,000
Magnetostriction constant λ _S	ppm	+ 25
Curie temperature T _C	°C	165
SPECIFIC IRON LOSSES OF STRIP MATERIAL AFTER FINAL HEAT TREATMENT		strip thickness 0.35 mm
о _{Fe} 0.5 Т 50 Hz	W/kg	0.06
o _{Fe} 0.5 T 400 Hz	W/kg	1.7
o _{Fe} 0.5 T 1,000 Hz	W/kg	8.7
_{Fe} 0.7 T 50 Hz	W/kg	0.14
o _{Fe} 0.7 T 400 Hz	W/kg	3.4
o _{Fe} 0.7 T 1,000 Hz	W/kg	19
	i i	
MECHANICAL PROPERTIES (finally heat treated)		
Young's modulus E	GPa	170
Yield strength R _{p0.2}		
	MPa	100
Hardness	MPa HV	100 95
MECHANICAL PROPERTIES (cold rolled)		
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2}	HV MPa	95 840
MECHANICAL PROPERTIES (cold rolled) Yield strength $R_{p0.2}$ Tensile strength R_{m}	HV	95
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A	HV MPa MPa	95 840 870
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A	MPa MPa MPa %	95 840 870 1
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A Hardness RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT	MPa MPa MPa %	95 840 870 1
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A Hardness RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT	MPa MPa MPa %	95 840 870 1
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A Hardness RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT Atmosphere	MPa MPa MPa %	95 840 870 1 260
MECHANICAL PROPERTIES (cold rolled) Yield strength R _{p0.2} Tensile strength R _m Elongation A Hardness RECOMMENDED PARAMETERS FOR THE FINAL HEAT TREATMENT Atmosphere Temperature Annealing time	MPa MPa % HV	95 840 870 1 260 hydrogen

Published by VACUUMSCHMELZE GmbH & Co. KG, Hanau, March 2022 © VACUUMSCHMELZE GmbH & Co. KG 2021. All rights reserved. ® is a Registered Trademark of VACUUMSCHMELZE GmbH & Co. KG

