

Item no.: T60404-N4646-X764

K-no.: 26078

50A Current Sensor for 5V Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 31.01.2022

Customer: Standard type | Customers Part no.: | Page 1 of 4

Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- · Casing and materials UL-listed

Characteristics

- Excellent accuracy
- Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- Short response time
- · Wide frequency bandwidth
- Compact design
- · Reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Switched Mode Power Supplies (SMPS)
- Power Supplies for welding applications
- Uninterruptible Power Supplies (UPS)

Electrical data - Ratings

I _{PN}	Primary nominal rms current	50	Α
V_{out}	Output voltage @ I _P	$V_{Ref} \pm (0.625*I_P/I_{PN})$	V
V _{out}	Output voltage @ I _P =0, T _A =25°C	V _{Ref} ± 0.000725	V
V _{Ref}	External Reference voltage range	04	V
	Internal Reference voltage	2.5 ± 0.005	V
K _N	Turns ratio	14:1400	

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range	±150			
Χ	Accuracy @ I _{PN} , T _A = 25°C			0.7	%
EL	Linearity			0.1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±0.725	mV
ΔV_o / V_{Ref} / ΔT	Temperature drift of Vout @ IP=0, VRef =2.5V, TA= -	4085°C	0.7	10	ppm/°C
t _r	Response time @ 90% von I _{PN}		300		ns
Δt (I _{P,max})	Delay time at di/dt = 100 A/μs		200		ns
f	Frequency bandwidth	DC200			kHz

General data

		min.	typ.	max.	Unit
TA	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature (acc. to M3101)	-40		+105	°C
m	Mass		12		g
Vc	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		15		mA

Constructed and manufactored and tested in accordance with EN 61800-5-1 (Pin 1 – 4 to Pin 5 – 12) Reinforced insulation, Insulation material group 1, Pollution degree 2

Sclear	Clearance (component without solder pad)	9.6		mm
Screep	Creepage (component without solder pad)	10.6		mm
V_{sys}	System voltage overvoltage category 3		600	V _{RMS}
V _{work}	Working voltage		1060	V_{RMS}
U _{PD}	Rated discharge voltage		1320	V _{PEAK}

Note: "According UL 508: Max. potential difference = 600 VA

Date	Name	Issue	Amendme	ent					
31.01.2022	NSch.	83	Applicable	oplicable documents changed on sheet 3. "The color of the plastic material added. Minor change					
09.04.2021	NSch.	83	Typo. Ip =	ypo. lp = 6 Arms instead of lp = 8 Arms at Vout = 2.5V+0.300 V. Minor change					
Hrsg.: R&D-PD NPI D			Bearb:	DJ		MC-PM: Ga.			freig.: SB released

Item no.: T604

T60404-N4646-X764

K-no.: 26078

50A Current Sensor for 5V Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

12

Date: 31.01.2022

Customer: Standard type | Customers Part no.: | Page 2 of 4

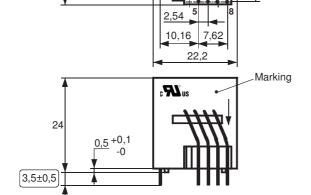
Mechanical outline (mm):

13,7

3x1,905

General tolerances DIN ISO 2768-c

[12,7]

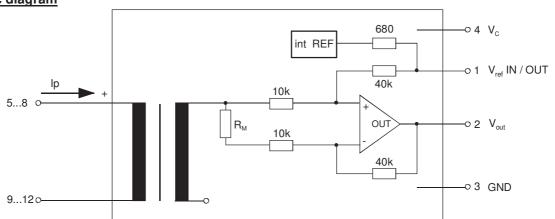

1...4: 0.46*0.46 mm

Connections:

1...4: 0.46*0.46 mm 5..12: Ø 1 mm

Marking:

UL-sign 4646-X764-83 F DC



test dimension

Tolerances grid distance ±0,25mm

DC= Date Code F = Factory

Schematic diagram

Possibilities of wiring (@ T_A = 85°C)

primary windings	primary RMS	y current maximal	output voltage RMS	turns ratio	primary resistance	wiring
N _P	I _P [A]	$\hat{\mathbf{I}}_{P,max}$ [A]	$V_{out}(I_P)[V]$	K_N	$R_P \left[m\Omega \right]$	
1	50	±150	2.5±0.625	1:1400	0.25	9 12
2	12	±75	2.5±0.300	2:1400	1.0	9 12
4	6	±37.5	2.5±0.300	4:1400	4	9 12

Hrsg.: R&D-PD NPI D	Bearb: DJ	MC-PM: Ga.		freig.: SB
editor	designer	check		released

Item no.:

T60404-N4646-X764

K-no.: 26078

50A Current Sensor for 5V Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 31.01.2022

Customer: Standard type Customers Part no.: Page 3 of 4

Electrical Data

		min.	typ.	max.	Unit
V _{Ctot}	Maximum supply voltage (without function)			7	V
Ic	Supply Current with primary current	15m	$A + I_p * K_N + V_0$	ut/RL	mA
I _{out,SC}	Short circuit output current		±20		mA
R_P	Resistance / primary winding @ T _A =25°C		1		$m\Omega$
Rs	Secondary coil resistance @ T _A =85°C			67	Ω
$R_{i,Ref}$	Internal resistance of Reference input		670		Ω
R_{i} ,(V_{out})	Output resistance of Vout			1	Ω
R_L	External recommended resistance of Vout	1			$k\Omega$
CL	External recommended capacitance of Vout			500	pF
$\Delta X_{Ti} / \Delta T$	Temperature drift of X@T _A = -40 +85 °C			40	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any offset drift including:		2	6	mV
V_{0t}	Longtermdrift of V₀		1		mV
V ₀ T	Temperature drift von V ₀ @ T _A = -40+85°C		1		mV
V_{0H}	Hysteresis of V_{out} @ $I_{P=0}$ (after an overload of 10 x I_{PN})		1	mV
$\Delta V_0/\Delta V_C$	Supply voltage rejection ratio			1	mV/V
Voss	Offsetripple (with 1 MHz- filter first order)			35	mV
Voss	Offsetripple (with 100 kHz- filter first order)		2	5	mV
Voss	Offsetripple (with 20 kHz- filter first order)		0.6	1	mV
Ck	Maximum possible coupling capacity (primary - sec	condary)	5	10	pF
	Mechanical stress according to M3209/3 Settings: 10 – 2000 Hz, 1 min/Octave, 2 hours			3	g

Inspection (Measurement after temperature balance of the samples at room temperature; SC = significant characteristic)

Vout (SC)	(V) M3011/6:	Output voltage (I _P =40As, 40-80Hz)	625 ± 0.7%	mV
V _{out} -V _{Ref}	(V) M3226:	Offset voltage	± 0.725	mV
V _d	(V) M3014:	Test voltage, 1s pin 1 – 4 vs. pin 5 – 12	1.8	kV _{RMS}
Ve	(AQL 1/S4)	Partial discharge voltage acc.M3024 with V _{vor}	1400 1750	V _{RMS}

Type Testing (Pin 1 - 4 to Pin 5 - 12)

V_W	HV transient test acc. to M3064 (1.2 μs / 50 μs-wave form)	8	kV
V_d	Testing voltage acc. to M3014, 5s	3.6	kV
Ve	Partial discharge voltage acc. to M3024	1400	V _{RMS}
	with V	1750	Vome

Other Instructions

- Operating temperature of the current sensor and the primary conductor must not exceed 105°C
- Current direction: A positive output voltage appears at point V_{out} vs. V_{Ref}, by primary current in direction of the arrow.
- Housing and bobbin material UL-listed: Flammability class 94V-0.
- Enclosures according to IEC529: IP50.
- Further standards: UL508 file E317483, category NMTR2 / NMTR8
- The color of the plastic material is not specified and the current sensor can be supplied in different colors (e.g. brown, black, white, natural). This has no effect on the specifications or UL approval.

Hrsg.: R&D-PD NPI D	Bearb: DJ	N	MC-PM: Ga.		freig.: SB
editor	designer	ch	check		released

Item no.: T60404-N4646-X764

K-no.: 26078

50A Current Sensor for 5V Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)

Date: 31.01.2022

Customer: Standard type Customers Part no.: Page 4 of 4

Explanation of several of the terms used in the tablets (in alphabetical order)

tr: Response time (describe the dynamic performance for the specified measurement range), measured as delay time at $I_P = 0.9 \cdot I_{PN}$ between a rectangular current and the output voltage V_{OUt} (I_D)

 Δt (I_{Pmax}): Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of dip/dt \geq 100 A/ μ s.

 V_0 : Offset voltage between V_{out} and the rated reference voltage of $V_{\text{ref}}=2.5V.$ $V_o=V_{out}(0)\ -2.5V$

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage V_e U_{PD} = $\sqrt{2} * V_e / 1.5$

V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1,875 * U_{PD} required for partial discharge test in IEC 61800-5-1

 $V_{vor} = 1.875 * U_{PD} / \sqrt{2}$

 V_{sys} System voltage RMS value of rated voltage according to IEC 61800-5-1

Vwork Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

V_{0H}: Zero variation of V₀ after overloading with a DC of tenfold the rated value

V_{0t}: Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C.

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0,625V} - 1 \right| \%$

X_{ges}(I_{PN}): Permissible measurement error including any drifts over the temperature range by the current measurement I_{PN}

 $X_{ges} = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - 2,5V}{0,625V} - 1 \right| \quad \% \quad \text{or} \quad X_{ges} = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V_{ref}}{0,625V} - 1 \right| \quad \% = 100 \cdot \left| \frac{V_{out} \left(I_{PN} \right) - V$

 $\varepsilon_{\rm L} : \qquad \qquad \text{Linearity fault defined by} \qquad \varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{\it out}(I_{\it P}) - V_{\it out}(0)}{V_{\it out}(I_{\it PN}) - V_{\it out}(0)} \right| \, \%$