VACUUMSCHMELZE

SPECIFICATION

Item no.: T60404-N4646-X975

K-no.: 25792 300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit) Date: 04.02.2022

Customer: Standard type Customers Part no.: Page 1 of 4

8Description

- Closed loop (compensation)
 Current Sensor with magnetic field probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- Excellent accuracy
- · Very low offset current
- Very low temperature dependency and offset current drift
- Very low hysteresis of offset current
- Short response time
- · Wide frequency bandwidth
- Compact design

Applications

Mainly used for stationary operation in industrial applications:

Solar converters

Electrical data - Ratings

I _{PN}	Primary rated current, r.m.s	50	Α
$I_{\Delta N}$	Differential rated current, r.m.s	0.3	Α
Vout	Output voltage @ IP	$V_{Ref} \pm (0.74*I_{\Delta P}/I_{\Delta N})$	V
$V_{out}(0)^*$)	Output voltage @ I _P =0, T _A =25°C	$V_{Ref} \pm 0.025$	V
V _{out} (Error)	in case of error (current sensor) V _{out} < 0,5V is set	<0.5	V
V _{Ref}	External Reference voltage range	2.5 ± 0.005	V
	Internal Reference voltage	$2,5 \pm 0,100$	V
V _{Ref} (test current)**)	Reference voltage (external)	01	V
V _{out} (test current)**)	Output voltage @ V _{Ref} = 01V	$V_{out}(0) + 0.250 \pm 0.060$) V
K _N	Turns ratio	1:1:1 : 1000	

^{*)} With switching on and after "test current" the current sensor is degaussed by an internal AC-current for about 110ms. Meantime the output is set to $V_{out} < 0.5V$.

Accuracy - Dynamic performance data

		min.	typ.	max.	Unit
I _{P,max}	Max. measuring range (differencial current)	±0.85			
Χ	Accuracy @ I _{PN} , T _A = 25°C			1.5	%
εL	Linearity			1	%
V_{out} - V_{Ref}	Offset voltage @ I _P =0, T _A = 25°C			±25	mV
Δ V _o / ΔΤ	Temperature drift of Vout @ IP=0, TA= -4085°C		0.1		mV/°C
t_{r}	Response time @ 90% von IPN		35		μs
f	Frequency bandwidth	DC10			kHz

General data

		min.	typ.	max.	Unit
T_A	Ambient operating temperature	-40		+85	°C
Ts	Ambient storage temperature	-40		+85	°C
m	Mass		42		g
Vc	Supply voltage	4.75	5	5.25	V
Ic	Current consumption		16		mA
	Constructed and manufactored and tested in Basic insulation, Insulation material group 1, I			(primary vs. se	econdary)
Sclear	Clearance (component without solder pad)	8			mm
Screep	Creepage (component without solder pad)	8			mm
V _{sys}	System voltage overvoltage category 3	RMS		600	V
V _{work}	Working voltage over voltage category 2	RMS		1000	V
U_{PD}	Rated discharge voltage	peak val	ue	1414	V

Date	1	Name	Issue	Amendment					
04.02.	.2022	NSch.	81	Applicable do	cuments changed o	n sheet 2. "The color	of the plastic materi	al added. Minor ch	nange
editor	Hrsg.: l	KB-E		arb: Le		KB-PM: KRe.			freig.: SB released

^{**)} Due to external $V_{Ref} = 0...1V$ an internal test current is generated.

SPECIFICATION

(electronic circuit)

T60404-N4646-X975 Item no.:

K-no.: 25792

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

04.02.2022 Date:

2

Page

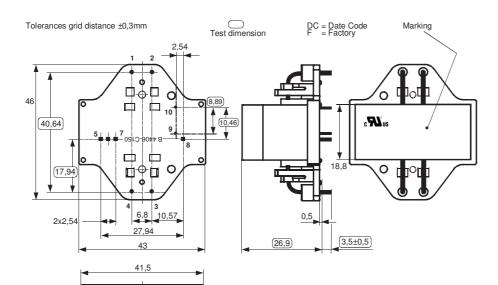
Customer: Standard type Mechanical outline (mm):

Customers Part no .:

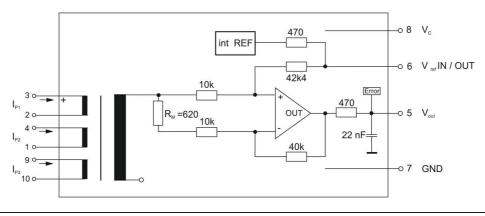
General tolerances DIN ISO 2768-c

Connections:

1...4: 2.8 mm 5...8: 0.6*0.7 mm


of

4


9...10: 0.8 mm

Marking:

Schematic diagram

Applicable documents:

Current direction: A positive output current appears at point V_{out}, by primary current in direction of the arrow.

Housing and bobbin material UL-listed: Flammability class 94V-0.

Enclosures according to IEC529: IP50.

Temperature of the primary conductor should not exceed 100°C.

Short clearance and creepage distances due to metallic shielding.

Further standards UL 508, file E317483, category NMTR2 / NMTR8

The color of the plastic material is not specified and the current sensor can be supplied in different colors

(e.g. brown, black, white, natural). This has no effect on the specifications or UL approval

Hrsg.: KB-E	Bearb: Le	KB-PM: KRe.		freig.: SB
editor	designer	check		released

VACUUMSCHMELZE	SPECI	FICATION		Item no	D.:	T60404-N46	46-X975
-no.: 25792	300 mA Differential Current Sensor for 5V- Supply Voltage For electronic current measurement: DC, AC, pulsed, mixed, with a galvanic isolation between primary circuit (high power) and secondary circuit (electronic circuit)			Date: 04.02.2022			
Sustomer: Standa	ard type	C	ustomers Part	no.:		Page 3	of 4
dotomor. Otana	ara typo	I					
lectrical Data				min.	typ.	max.	Unit
V _{Ctot}	Maximum sı	upply voltage (without fu	inction)		typ.	7	V
Ic		ent with primary currer	,	16mA	+Ip*KN+Vout	/RL	mA
l _{out,SC}	Short circuit	output current			±20		mA
R _{P1,P2}	Primary resi	stance @ T _A =25°C			0.17		mΩ
R _{P3}	Primary resi	stance @ T _A =25°C			1.14		mΩ
Rs	Secondary of	coil resistance @ T _A =8	5°C			80	Ω
Ri,Ref	-	stance of Reference in			470		Ω
Ri,(Vout)		tance of Vout			470		Ω
RL		ommended resistance	of V _{out}		100		kΩ
CL		ommended capacitand			no limit		pF
$\Delta X_{Ti}/\Delta T$	Temperature	e drift of X @ $T_A = -40$	+85 °C			400	ppm/K
$\Delta V_{Ref}/\Delta T$	Temperature	e drift of V_{Ref} @ $T_A = -4$	0 +85 °C		5	50	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Sum of any	offset drift including:			16	25	mV
V _{0t}	Longtermdri	ft of V ₀			12		mV
V _{0T}	Temperature	e drift von V_0 @ $T_A = -4$	∙0+85°C		10		mV
$\Delta V_0/\Delta V_C$	Supply volta	ge rejection ratio			7.5	1	mV/V
V _{0H} V _{0H, Demag}		of V _{out} @ I _P =0 (after an after Degaussing	overload of 1000 x	I _{PN})	75	175 12	mV mV
Voss	Offsetripple	(without external filter)				120	mV
V _{OSS}	Offsetripple	(with 20 kHz- filter fird	order)		35	50	mV
V _{oss}		(with 1.6 kHz- filter firs			10	15	mV
		stress according to M3 - 2000 Hz, 1 min/Dec				3g	
	·	erature balance of the sa	·				
$V_{out} (I_P=I_{PN})$ (V)		Output voltage vs. ref	erence (I _P =0.4A, 4	0-80Hz)		0.972 1.002	
		Offset voltage				± 0.025	V
		Output voltage @ VRe				0.250± 0.060	V kV
$\begin{array}{c} V_{out}\!\!-\!\!V_{Ref} \; (I_P\!\!=\!\!0) \;\; (V) \\ V_{out} \!\! (test \; current) \;\; (V) \\ V_d \qquad \qquad (V) \end{array}$	M3014:	Test voltage, RMS, 1	5			3.6	
$V_{out}(test current)$ (V) V_{d} (V)	M3014: QL 1/S4)	Test voltage, RMS, 1 pin 1 – 4 vs. 5 – 10 Partial discharge volta with V_{vor} (RMS)		RMS)		1500 3600	V V
$V_{out}(test current)$ (V) V_{d} (V) V_{e} (AC	M3014: QL 1/S4)	pin 1 – 4 vs. 5 – 10 Partial discharge volta		RMS)		1500	
Vout(test current) (V) Vd (V) Ve (AC type Testing (Pin 1 -	M3014: QL 1/S4) - 4 vs. 5 -10)	pin 1 $-$ 4 vs. 5 $-$ 10 Partial discharge volta with V_{vor} (RMS)	ge acc.M3024 (F	,	m)	1500 3600	V
$V_{out}(test current)$ (V) V_{d} (V)	M3014: QL 1/S4) - 4 vs. 5 -10) HV transient	pin 1 – 4 vs. 5 – 10 Partial discharge volta	ge acc.M3024 (F	,	m) (1min)	1500	

SPECIFICATION

Item no.: T60404-N4646-X975

Date:

Page

K-no.: 25792

Customer:

300 mA Differential Current Sensor for 5V- Supply Voltage

For electronic current measurement: DC, AC, pulsed, mixed ..., with a galvanic isolation between primary circuit (high power) and secondary circuit

(electronic circuit)

Standard type

Customers Part no .:

4

of

4

04.02.2022

Explanation of sever al of the terms used in the tablets (in alphabetical order)

Response time (describe the dynamic performance for the specified measurement range), measured as delay time t_r: at $I_P = 0.9$ I_{PN} between a rectangular current and the output voltage V_{OUt} (I_p)

Delay time (describe the dynamic performance for the rapid current pulse rate e.g short circuit current) Δt (I_{Pmax}): measured between I_{Pmax} and the output voltage V_{out}(I_{Pmax}) with a primary current rise of dip/dt ≥ 100 A/µs.

 U_{PD} Rated discharge voltage (recurring peak voltage separated by the insulation) proved with a sinusoidal voltage Ve $= \sqrt{2} * V_e / 1.5$ U_{PD}

 V_{vor} Defined voltage is the RMS valve of a sinusoidal voltage with peak value of 1.875 * UPD required for partial discharge test in IEC 61800-5-1

 $= 1.875 * U_{PD} / \sqrt{2}$

 $V_{\text{\scriptsize sys}}$ System voltage RMS value of rated voltage according to IEC 61800-5-1

 V_{work} Working voltage voltage according to IEC 61800-5-1 which occurs by design in a circuit or across insulation

V₀: Offset voltage between V_{out} and the rated reference voltage of $V_{ref} = 2.5V$.

 $V_0 = V_{out}(0) - 2.5V$

 V_{0H} : Zero variation of Vo after overloading with a DC of tenfold the rated value

Long term drift of V₀ after 100 temperature cycles in the range -40 bis 85 °C. V_{0t}:

X: Permissible measurement error in the final inspection at RT, defined by

 $X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.74V} - 1 \right| \%$

Permissible measurement error including any drifts over the temperature range by the current measurement IPN $X_{ges}(I_{PN})$:

 $X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - 2,5V}{0.74V} - 1 \right| \% \text{ or } X_{ges} = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{ref}}{0.74V} - 1 \right| \%$

 $\varepsilon_{\rm L} = 100 \cdot \left| \frac{I_{\rm P}}{I_{\rm PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right| \%$ εL: Linearity fault defined by