Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current: DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Date: 09.02.2017

Customer: Standard type

Customer Part no:

Page 1 of 4

Description

- Closed loop (compensation)
 - Current Sensor with magnetic probe
- Printed circuit board mounting
- Casing and materials UL-listed

Characteristics

- excellent accuracy
- very low offset current
- very low temperature dependency and offset drift
- very low hysteresis of offset current
- short response time
- wide frequency bandwidth
- compact design
- reduced offset ripple

Applications

Mainly used for stationary operation in industrial applications:
- Solar inverter

Electrical data - Ratings

- \(I_{PN} \) Primary nominal RMS current 50 A
- \(I_{AN} \) Differential rated RMS current 0.3 A
- \(V_{OUT} \) Output voltage \(@ I_{P} \) \(V_{REF} \pm (0.74 \times I_{AN}/I_{PN}) \) V
- \(V_{OUT}(0)^1 \) Output voltage \(@ I_{P}=0A, T_A=25^\circ C \) \(V_{REF} \pm 0.025 \) V
- \(V_{OUT}(\text{Error}) \) in case of error (current sensor) \(V_{OUT} < 0.5V \) is set \(< 0.5 \) V
- \(V_{REF} \) internal reference voltage 2.5 \pm 0.005 V
- \(V_{REF}(\text{test current})^2 \) Reference voltage (external) 0 … 0.1 V
- \(V_{OUT}(\text{test current}) \) Output voltage \(@ V_{REF}=0 \ldots 0.1V \) \(V_{OUT}(0) + 0.25 \pm 0.06 \) V
- \(K_N \) Transformation ratio 1:1 : 20 : 1000

1) with switching on and after “test current” the sensor is degaussed by an internal AC-current for about 110ms. In this time the output is set to \(V_{OUT} < 0.5V \).

2) If \(V_{REF} \) is set external to 0…0.1V an internal test current is generated.

Accuracy – Dynamic performance data

- \(I_{P,max} \) Max. measuring range (differential current) \pm 0.85 A
- \(X \) Accuracy \(@ I_{AN}, T_A = 25^\circ C \) \pm 1.5 %
- \(\varepsilon_L \) Linearity \pm 1 %
- \(V_O = (V_{OUT}-V_{REF}) \) Offset voltage \(@ I_{P} = 0A, T_A = 25^\circ C \) \pm 25 mV
- \(\Delta V_O/\Delta T \) Temperature drift of \(V_{OUT} @ I_{P}=0A, T_A \) 0.1 mV/°C
- \(t_r \) Response time \(@ 90\% \) of \(I_{AN} \) 35 µs
- \(f_{SW} \) Frequency bandwidth DC…8 kHz

General data

- \(\theta_A \) Ambient operation temperature -40 85 °C
- \(\theta_S \) Ambient storage temperature (acc. to M3101) -40 85 °C
- \(m \) Mass 60 g
- \(V_C \) Supply voltage 4.75 5 5.25 V
- \(I_C \) Supply current \(@ I_{P} = 0A \) and \(RT \) 15 mA

1) \(S_{\text{clear}} \) Clearance (component without solder pad) 8.5 mm
1) \(S_{\text{creep}} \) Creepage (component without solder pad) 10.0 mm
1) \(U_{\text{sys}} \) System voltage *determines impulse voltage acc. table 7 600 \(V_{RMS} \)
1) \(U_{\text{AC}} \) Working voltage *acc. table 10 1000 \(V_{RMS} \)
1) \(U_{\text{PD}} \) Rated discharge voltage *acc. table 24 with \(U_{PD}=U_{AC}\sqrt{2} \) 1414 \(V_{PEAK} \)

1) Constructed and manufactured and tested in accordance with IEC 61800-5-1:2007
Reinforced Insulation, Pollution degree 2, Overvoltage category III, Insulation material group I

Date

Name Issue Amendment

81

Hrg.: KB-E
Bearb.: DJ
KB-PM: KRe.
freig.: BEF
editor designer check released

Wiedergabe sowie Vervielfältigung dieser Unterlage, Verarbeitung und Mitteilung ihres Inhalts nicht gestattet, soweit nicht ausdrücklich zugestanden. Zuverhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patenterteilung oder GM-Eintragung vorbehalten

Copying of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden.

Any offenders are liable to pay all relevant damages
300mA Differential Current Sensor for 5V Supply Voltage
For the electronic measurement of current: DC, AC, pulsed, ..., with galvanic isolation between the primary and the secondary circuit.

Connections:
- Pin 5-10: 0.7mm x 0.7mm
- Pin 1-4: Ø2.8mm

Marking:
- 4646-X921
- F DC

Connections:
- Pin 5-10: 0.7mm x 0.7mm
- Pin 1-4: Ø2.8mm
Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current:
DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Date: 09.02.2017

Customer: Standard type

Customers Part no:

Page 3 of 4

Electrical data:

(Investigate by a type checking)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>min.</th>
<th>typ.</th>
<th>max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{C,\text{max}}$</td>
<td>6</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_C</td>
<td>15mA+I_{App}*K_{N+}V_{OUT}/R_L</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{OUT,SC}$</td>
<td>±10</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_S</td>
<td>80</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{Test}</td>
<td>0.9</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{P1,P2}$</td>
<td>0.24</td>
<td>mΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{REF}</td>
<td>470</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>470</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta X/\Delta \theta$</td>
<td>400</td>
<td>ppm/K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{\text{REF}}/\Delta \theta$</td>
<td>5</td>
<td>50</td>
<td>ppm/K</td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{O}/\Delta V_C$</td>
<td>32</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{O1}</td>
<td>12</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{O2}</td>
<td>10</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{O}/\Delta V_C$</td>
<td>10</td>
<td>mV/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>75</td>
<td>125</td>
<td>25</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{OH,\text{Demag}}$</td>
<td>Hysteresis after Degaussing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>70</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>20</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OSS}</td>
<td>6</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V_{O}/\Delta V_C$</td>
<td>1.5</td>
<td>g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{d}</td>
<td>1.875</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{VDE}</td>
<td>1.875</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_{PD}</td>
<td>1.875</td>
<td>kV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Routine Tests:

(Measurement after temperature balance of the samples at room temperature, SC=significant characteristic)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OUT} (SC)</td>
<td>(100%) M3011/6: Output voltage vs. reference</td>
<td>729 ... 751 mV</td>
</tr>
<tr>
<td>V_{O}</td>
<td>(100%) M3226: Offset voltage (V_{OUT}-V_{REF})</td>
<td>±25 mV</td>
</tr>
<tr>
<td>$V_{OUT,\text{test current}}$</td>
<td>(100%) Output voltage @ $V_{REF} = 0V$</td>
<td>250 ± 60 mV</td>
</tr>
<tr>
<td>U_{d}</td>
<td>(100%) M3014: Test voltage, 1s, Pin 1-4 vs. Pin 5-10</td>
<td>1.8 kV_{RMS}</td>
</tr>
<tr>
<td>U_{PD}</td>
<td>(AQL 1/S4) Partial discharge voltage (extinction) *acc. table 24</td>
<td>1.5 kV_{RMS}</td>
</tr>
</tbody>
</table>

Type Tests:

(Precondition acc. to M3236)

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_W</td>
<td>M3064: Impulse test (1.2µs/50µs wave form) Pin 1-4 vs. Pin 5-10</td>
<td>6 kV</td>
</tr>
<tr>
<td>$U_{W,\text{prim-prim}}$</td>
<td>M3064: Impulse test (1.2µs/50µs wave form) Pin 1 vs. Pin 13,14 and Pin 14 vs. Pin 1,2</td>
<td>6 kV</td>
</tr>
<tr>
<td>U_d</td>
<td>M3014: Test voltage, 60s Pin 1-4 vs. Pin 5-10</td>
<td>3.6 kV_{RMS}</td>
</tr>
<tr>
<td>$U_{d,\text{prim-prim}}$</td>
<td>M3014: Test voltage between primary conductors, 60s Pin 1 vs. Pin 13,14 and Pin 14 vs. Pin 1,2</td>
<td>3.6 kV_{RMS}</td>
</tr>
<tr>
<td>U_{PD}</td>
<td>(1.875) Partial discharge voltage (extinction) *acc. table 24</td>
<td>1.5 kV_{RMS}</td>
</tr>
</tbody>
</table>

Other instructions

- Current direction: A positive output voltage appears at point V_{OUT}, if primary current flows in direction of the arrow.
- Temperature of the primary conductor should not exceed 105°C.
- Housing and bobbin material UL-listed: Flammability class 94V-0.

Hrg.: KB-E
Bearb.: DJ
KB-PM: KRe.
freig.: BEF

Copyrighting of this document, disclosing it to third parties or using the contents there for any purposes without express written authorization by use illegally forbidden. Any offenders are liable to pay all relevant damages.
Specification

Item no.: T60404-N4646-X921

K-No.: 26621

300mA Differential Current Sensor for 5V Supply Voltage

For the electronic measurement of current: DC, AC, pulsed ..., with galvanic isolation between the primary and the secondary circuit

Date: 09.02.2017

Customer: Standard type

Customer Part no:

Page 4 of 4

Explanation of several terms used in the tables:

\(V_{\text{O}t} \) \quad Long term drift of \(V_{\text{O}} \) after 100 temperature cycles in the range -40°C to 85°C.

\(t_r \) \quad Response time, measured as a delay time at \(I_{\Delta P} = 0.9 \times I_{\Delta N} \) between a rectangular primary current and the output current or voltage.

\(t_{ra} \) \quad Reaction time, measured as a delay time at \(I_{\Delta P} = 0.1 \times I_{\Delta N} \) between a rectangular primary current and the output current or voltage.

\(X_{\text{ges}(I_{\Delta N})} \) \quad The sum of all possible errors over the temperature range by measuring a current \(I_{\Delta N} \):

\[
X_{\text{ges}(I_{\Delta N})} = 100 \times \left| \frac{V_{\text{OUT}(I_{\Delta N})} - 2.5V}{0.74V} - 1 \right| \%
\]

\(X \) \quad Permissible measurement error in the final inspection at RT, defined by

\[
X = 100 \times \left| \frac{V_{\text{OUT}(I_{\Delta N})} - V_{\text{OUT}(0)}}{0.74V} - 1 \right| \%
\]

\(\Delta X_{\theta} \) \quad \(\Delta X_{\theta} = X_{\theta_{\text{max}}} - X_{\theta_{\text{min}}} \)

\(\varepsilon_L \) \quad Linearity fault defined by:

\[
\varepsilon_L = 100 \times \left(\frac{I_{\Delta P}}{I_{\Delta N}} \right) \frac{V_{\text{OUT}(I_{\Delta P})} - V_{\text{OUT}(0)}}{V_{\text{OUT}(I_{\Delta N})} - V_{\text{OUT}(0)}} \%
\]

Where \(I_{\Delta P} \) is any input DC current and \(V_{\text{OUT}} \) the corresponding output term. (\(V_O = 0 \)).

Application Information

The external test current can be generated with the use of a resistor \(R \) and a switch \(X \) or something similar (Transistor, Mosfet, etc.). The resistor determine the current at a given voltage and so the output voltage can be calculated.

\[
V_{\text{OUT}} = V_{\text{REF}} \pm \frac{5V}{R + \frac{R_{\text{Test}}}{I_{\Delta N}}} \cdot 20
\]